If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=180^2
We move all terms to the left:
2x^2-(180^2)=0
We add all the numbers together, and all the variables
2x^2-32400=0
a = 2; b = 0; c = -32400;
Δ = b2-4ac
Δ = 02-4·2·(-32400)
Δ = 259200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{259200}=\sqrt{129600*2}=\sqrt{129600}*\sqrt{2}=360\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-360\sqrt{2}}{2*2}=\frac{0-360\sqrt{2}}{4} =-\frac{360\sqrt{2}}{4} =-90\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+360\sqrt{2}}{2*2}=\frac{0+360\sqrt{2}}{4} =\frac{360\sqrt{2}}{4} =90\sqrt{2} $
| -10/21x=⅔ | | 2/7(x–9)=–4 | | -77+22x=-99x | | x^2-x-6=7 | | (7x+9)=2x | | 12a=444 | | x2-7x+50=0 | | 6x10^12=6000000000000 | | 25-2t-10=19 | | 8x-62=90 | | y²+6y-7=0 | | 7=12y−12y | | x+49+x+21=180 | | 25-2t-1=19 | | 3+z=9 | | 66=6(r-73) | | x21+x49=180 | | a-42=72 | | 19(z+901)=-380 | | 4y-6+3y+5=90 | | t+36=54 | | 1000x=725 | | x+78+89=180 | | 5+2y=10y+2y | | s*6+21=117 | | 2(5-t)=16 | | 23+4x-5=180 | | 5=2y=10y+2y | | 28/x=14 | | 6-x=(5/3)x | | 255+15x=25x | | 32=−2(3x–5) |